Corollary 1. For $\frac{1}{2} < z < 2$, $$ {}_2 F_1 \left(\frac{1}{2}, \frac{1}{2};1;1-\frac{1}{z}\right) = \sqrt{z} {}_2 F_1 \left(\frac{1}{2}, \frac{1}{2};1;1-z\right). $$ Proof. We recall Bailey's Formula ((i) in [2]) for $w\in\mathbb R$: \begin{equation}\tag{1} (1-w)^{-a} {}_2 F_1 \left( a,b;c; - …
Categories
- Mathematics (101)
- Calculations (20)
- In Handai (49)
- MS Entrance Exam (7)
- Small Topics (10)
- Topics on PDE (16)
- Music (47)
- Others (83)
- Blog Tips (40)
- Camera & Lens (36)
- Routine (225)
- In Daegu, Busan (15)
- In Osaka (133)
- In Seoul (78)
- In Tokyo (1)
- Travel (61)
- Hongkong (2)
- Kinoaki Onsen (城崎温泉) (9)
- Kyoto (京都) (21)
- Okinawa (7)
- Whole Japan (22)
- Mathematics (101)