[M1 Seminar II] Week 3 : Regularities of the Solution

This week we will prove that the solution of the system $u$ is in $C^0([0,T], W^{s,2}) \cap C^1([0,T], W^{s-1,2})$ so that $u \in C_b^1 ([0,T] \times \Bbb R^n)$. For this purpose we first show that $u \in L^\infty ([0,T], W^{s,2})$, … Continue reading

[M1 Seminar II] Week 2 : Local Existence for Quasi-linear Symmetric Hyperbolic Systems (2)

This week, we will prove the local existence of quasi-linear symmetric hyperbolic systems by using $u^{k}$ which is iteratively defined by the solution of the linear symmetric hyperbolic system. For this purpose we first proved the boundedness of $u^k$ in … Continue reading