[Calculation 10] Dixon Theorem

Dixon Theorem

Here we note Dixon’s theorem, which gives some special values of ${}_3 F_2$, since the proof is almost automatic by using Gauss and Kummer’s formulas which we’ve shown before. Theorem. (Dixon’s Theorem) $$ {}_3 F_2 (a,b,c;1+a-b,1+a-c;1) = \frac{\Gamma(1+\frac{a}{2})\Gamma(1+a-b)\Gamma(1+a-c)\Gamma(1+\frac{a}{2}-b-c)}{\Gamma(1+a)\Gamma(1+\frac{a}{2}-b)\Gamma(1+\frac{a}{2}-c)\Gamma(1+a-b-c)} $$   … Continue reading

[Calculation 6] Kummer’s Theorem

c6

Theorem. (Kummer’s Theorem) $$ {}_2 F_1 (a,b;1+a-b;-1) = \frac{\Gamma(1+a-b)\Gamma\left(1+\frac{1}{2}a\right)}{\Gamma(1+a)\Gamma\left(1+\frac{1}{2}a-b\right)} $$   To prove Kummer’s theorem, we introduce the following lemma, which is called Kummer’s quadratic transformation:   Lemma. (Kummer’s Quadratic Transformation) \begin{equation}\tag{1} {}_2 F_1 (a,b;1+a-b;z) = (1-z)^{-a} {}_2 F_1 \left( … Continue reading