[Calculation 13] A Simple Formula Related to Digamma Functions

digamma function

Theorem. The following holds: $$ \pi \;{}_2 F_1 \left( \frac{1}{2}, \frac{1}{2}; 1; 1-x\right) = \log \left( \frac{16}{x}\right) {}_2 F_1 \left( \frac{1}{2}, \frac{1}{2};1;x\right) – 4 \sum_{k=1}^\infty \frac{(\frac{1}{2})_k^2}{(k!)^2} \sum_{j=1}^k \frac{x^k}{(2j-1)(2j)}. $$   Proof. First, we recall the Corollary in [2] with $a=b=-\frac{1}{2}$ … Continue reading

[Calculation 12] A Basic Formula for Hypergeometric Functions

Hypergeometric Function

Theorem. Let $n \notin \mathbb Z$. Then we have \begin{align}\tag{1} &{}_2 F_1 \left( a+n+1, b+n+1; a+b+n+2; 1-z\right)\\ &\, \qquad\qquad\qquad=\frac{\Gamma(a+b+n+2)\Gamma(-n)}{\Gamma(a+1)\Gamma(b+1)}\; {}_2 F_1 (a+n+1,b+n+1;n+1;z)\\ &\, \qquad\qquad\qquad\qquad+\frac{\Gamma(a+b+n+2)\Gamma(n)z^{-n}}{\Gamma(a+n+1)\Gamma(b+n+1)} \;{}_2 F_1 (a+1,b+1;-n+1;z). \end{align}   Proof. We consider the following ODE, which is called hypergemoetric differential … Continue reading