Theorem. The following holds: $$ \pi \;{}_2 F_1 \left( \frac{1}{2}, \frac{1}{2}; 1; 1-x\right) = \log \left( \frac{16}{x}\right) {}_2 F_1 \left( \frac{1}{2}, \frac{1}{2};1;x\right) - 4 \sum_{k=1}^\infty \frac{(\frac{1}{2})_k^2}{(k!)^2} \sum_{j=1}^k \frac{x^k}{(2j-1)(2j)}. $$ Proof. First, we recall the Corollary …
Categories
- Mathematics (101)
- Calculations (20)
- In Handai (49)
- MS Entrance Exam (7)
- Small Topics (10)
- Topics on PDE (16)
- Music (47)
- Others (83)
- Blog Tips (40)
- Camera & Lens (36)
- Routine (225)
- In Daegu, Busan (15)
- In Osaka (133)
- In Seoul (78)
- In Tokyo (1)
- Travel (61)
- Hongkong (2)
- Kinoaki Onsen (城崎温泉) (9)
- Kyoto (京都) (21)
- Okinawa (7)
- Whole Japan (22)
- Mathematics (101)